Household Drinking Water Quality Updates

Subscribe to Household Drinking Water Quality Updates feed
from the WASHplus Project
Updated: 23 min 33 sec ago

Randomized Controlled Trials in Environmental Health Research: Unethical or Underutilized?

14 January 2015 15:08 (America/New_York)

Randomized Controlled Trials in Environmental Health Research: Unethical or Underutilized? PLoS Med, Jan 2015.

Authors: Ryan W. Allen , Prabjit K. Barn, Bruce P. Lanphear

Randomized controlled trials are standard practice in clinical and pharmaceutical research but have not been embraced by environmental health researchers. Greater use of the RCT design would complement the tremendous contributions made by other methods—including both observational epidemiology and toxicology—to our understanding of environmental risks and the development of environmental health policy.

Researchers, academic institutions, and funding agencies have a role to play in expanding the use of RCTs in environmental health research. Researchers should think creatively about potential interventions and consider the RCT as a possible study design to test their specific research question. Funding agencies should allocate money specifically for randomized studies of environmental interventions.

In addition to its scientific advantages, this would provide the additional benefit of encouraging research that aims not only to identify problems but also to identify possible solutions. Ethical issues must be considered carefully, and while institutional ethics approval is necessary, it is not sufficient to ensure that the research is conducted ethically. The RCT design has important limitations and is not applicable to all research questions, so observational studies will, and should, remain the workhorse in environmental health research.

Nevertheless, RCTs can help advance the field of environmental health by creating new knowledge of exposure–health relationships, providing more definitive evidence of causality, identifying efficacious interventions to reduce or eliminate exposure and health risks, and countering the perception that environmental risks are evaluated with inadequate rigor.

A rapid assessment of drinking water quality in informal settlements after a cholera outbreak in Nairobi, Kenya

14 January 2015 14:58 (America/New_York)

A rapid assessment of drinking water quality in informal settlements after a cholera outbreak in Nairobi, Kenya. Journal of Water and Health, In Press, Uncorrected Proof, 2014 | doi:10.2166/wh.2014.173

Authors – Elizabeth Blanton, Natalie Wilhelm, Ciara O’Reilly, Everline Muhonja, Solomon Karoki, Maurice Ope, Daniel Langat, Jared Omolo, Newton Wamola, Joseph Oundo, Robert Hoekstra, Tracy Ayers, Kevin De Cock, Robert Breiman, Eric Mintz and Daniele Lantagne

Populations living in informal settlements with inadequate water and sanitation infrastructure are at risk of epidemic disease. In 2010, we conducted 398 household surveys in two informal settlements in Nairobi, Kenya with isolated cholera cases. We tested source and household water for free chlorine residual (FCR) and Escherichia coli in approximately 200 households. International guidelines are ≥0.5 mg/L FCR at source, ≥0.2 mg/L at household, and <1 E. coli/100 mL.

In these two settlements, 82–38% of water sources met FCR guidelines; and, 7% and 8% were contaminated with E. coli, respectively. In household stored water, 82% and 35% met FCR guidelines and 11% and 32% were contaminated with E. coli, respectively. Source water FCR ≥0.5 mg/L (p = 0.003) and reported purchase of a household water treatment product (p = 0.002) were associated with increases in likelihood that household stored water had ≥0.2 mg/L FCR; which was associated with a lower likelihood of E. coli contamination (p < 0.001).

These results challenge the assumption that water quality in informal settlements is universally poor and the route of disease transmission, and highlight that providing centralized water with ≥0.5 mg/L FCR or (if not feasible) household water treatment technologies reduces the risk of waterborne cholera transmission in informal settlements.

Josh Kearns – Biochar for Control of Trace Contaminants in Water (Video)

14 January 2015 14:46 (America/New_York)

Uploaded on Dec 30, 2014 – Toxic synthetic chemicals such as pesticides and pharmaceutical residues are a major threat to drinking water safety worldwide. Unfortunately, major international water development initiatives focus exclusively on microbial pathogens (the most immediate threat to health) while neglecting synthetic chemical toxins. Low-cost, environmentally sustainable and locally managed treatment technologies are needed to protect human health in impoverished, rural and remote communities.

Our ongoing research demonstrates the potential of char made from surplus biomass (biochar) as an effective sorbent for chemical toxins. We have shown that highly adsorbing biochar can be produced from surplus biomass using low-tech, efficient and environmentally friendly gasifier drum ovens. Our work advances sustainable and locally managed treatment systems employing adsorbent biochar as an effective, affordable and accessible means for providing drinking water that is microbiologically and chemically safe to households and communities in remote and impoverished regions of the world.

Hand-to-mouth contacts result in greater ingestion of feces than dietary water consumption in Tanzania

14 January 2015 14:42 (America/New_York)

Hand-to-mouth contacts result in greater ingestion of feces than dietary water consumption in Tanzania: A quantitative fecal exposure assessment model. Environ. Sci. Technol., DOI: 10.1021/es505555f, Publication Date (Web): January 5, 2015

Authors: Mia Catharine Morgan Mattioli , Jennifer Davis , and Alexandria B. Boehm

Diarrheal diseases kill 1800 children under the age of five die each day, and nearly half of these deaths occur in sub-Saharan Africa. Contaminated drinking water and hands are two important environmental transmission routes of diarrhea-causing pathogens to young children in low-income countries. The objective of this research is to evaluate the relative contribution of these two major exposure pathways in a low-income country setting. A Monte Carlo simulation was used to model the amount of human feces ingested by children under five years old from exposure via hand-to-mouth contacts and stored drinking water ingestion in Bagamoyo, Tanzania.

Child specific exposure data were obtained from the USEPA 2011 Exposure Factors Handbook, and fecal contamination was estimated using hand rinse and stored water fecal indicator bacteria concentrations from over 1200 Tanzanian households. The model outcome is a distribution of a child’s daily dose of feces via each exposure route.

The model results show that Tanzanian children ingest a significantly greater amount of feces each day from hand-to-mouth contacts than from drinking water, which may help elucidate why interventions focused on water without also addressing hygiene often see little to no effect on reported incidence of diarrhea.

Critical parameters in the production of ceramic pot filters for household water treatment in developing countries

31 December 2014 10:33 (America/New_York)

Critical parameters in the production of ceramic pot filters for household water treatment in developing countriesJournal of Water and Health, In Press, Uncorrected Proof © IWA Publishing 2014 | doi:10.2166/wh.2014.090

A. I. A. Soppe, S. G. J. Heijman, I. Gensburger, A. Shantz, D. van Halem, J. Kroesbergen, G. H. Wubbels and P. W. M. H. Smeets

Aqua for All Foundation, Koningskade 40, The Hague 2596 AA, the Netherlands E-mail: gsoppe@planet.nl
Department of Water Management, Delft University of Technology, Stevinweg 1, Delft 2628 CN, the Netherlands
Engineers Without Borders Australia, 99 Howard Street, North Melbourne, VIC, Australia and Downer Ltd., 133 Main South Road, PO Box 13031, Dunedin 9052, New Zealand
Resource Development International Cambodia, No. 50A, Phum Prek Thom Sangkat Kbal Koh, Khan Mean Chey, Phnom Penh, Kingdom of Cambodia
Het Waterlaboratorium, J.W. Lucasweg 2, Haarlem 2031 BE, the Netherlands
Waterlaboratorium Noord, Rijksstraatweg 85, Glimmen 9756 AD, the Netherlands
KWR Watercycle Research Institute, Groningenhaven 7, Nieuwegein 3433 PE, the Netherlands

The need to improve the access to safe water is generally recognized for the benefit of public health in developing countries. This study’s objective was to identify critical parameters which are essential for improving the performance of ceramic pot filters (CPFs) as a point-of-use water treatment system. Defining critical production parameters was also relevant to confirm that CPFs with high-flow rates may have the same disinfection capacity as pots with normal flow rates. A pilot unit was built in Cambodia to produce CPFs under controlled and constant conditions.

Pots were manufactured from a mixture of clay, laterite and rice husk in a small-scale, gas-fired, temperature-controlled kiln and tested for flow rate, removal efficiency of bacteria and material strength. Flow rate can be increased by increasing pore sizes and by increasing porosity. Pore sizes were increased by using larger rice husk particles and porosity was increased with larger proportions of rice husk in the clay mixture.

The main conclusions are larger pore size decreases the removal efficiency of bacteria; higher porosity does not affect the removal efficiency of bacteria, but does influence the strength of pots; flow rates of CPFs can be raised to 10–20 L/hour without a significant decrease in bacterial removal efficiency.

Microbial quality of domestic water: following the contamination chain in a rural township in Kenya

31 December 2014 10:25 (America/New_York)

Microbial quality of domestic water: following the contamination chain in a rural township in Kenya. Journal of Water, Sanitation and Hygiene for Development, In Press, Uncorrected Proof © IWA Publishing 2014 | doi:10.2166/washdev.2014.070

Authors: Pauline W. Macharia, Paul T. Yillia, Wairimu A. Muia, Denis Byamukama and Norbert Kreuzinger

Department of Biological Sciences, Egerton University, Njoro Campus, P.O. Box 536-20115 Egerton, Kenya E-mail: macharia.pauline@yahoo.com
International Institute for Applied Systems Analysis, Schlossplatz 1, Laxenburg A-2361, Austria
WSS Services (U) Ltd, P.O. Box 27755 Kampala, Uganda
Resources & Waste Management, Vienna University of Technology, Institute for Water Quality, Karlsplatz 13/226 Vienna, Austria

A study was undertaken in Njoro Township, Kenya to evaluate the extent to which drinking water was subjected to post-collection faecal contamination in low-income and high-income households. Boreholes were the main drinking water sources, accounting for roughly 70% singular access. The microbial quality of drinking water from the boreholes deteriorated from the point-of-collection through conveying containers of small-scale water vendors to household storage containers, irrespective of their income status.

The densities of Escherichia coli (EC) were relatively low at the point-of-collection – median (M): 18 CFU/100 mL, range (R): 0–220, n = 60 – increasing considerably in the containers of water vendors (M: 290 CFU/100 mL, R: 30–350) and slightly (M: 360 CFU/100 mL, R: 0–520) between vendors and low-income households, many of whom used the services of vendors unlike high-income households who relied on a piped system on premises (M: 40 CFU/100 mL, R: 0–500).

Post-collection contamination was high in low-income households compared to high-income households but differences were not significant between the two household categories with and without household water treatment (HWT). Different HWT methods in the two household categories significantly reduced faecal contamination, but unhygienic handling and poor storage practices afterwards caused recontamination. HWT and behavioural change measures need not selectively target household groups solely on the basis of their income status.

Assessing the Consistency and Microbiological Effectiveness of Household Water Treatment Practices by Urban and Rural Populations Claiming to Treat Their Water at Home

31 December 2014 10:09 (America/New_York)

Assessing the Consistency and Microbiological Effectiveness of Household Water Treatment Practices by Urban and Rural Populations Claiming to Treat Their Water at Home: A Case Study in Peru. PLoS One, Dec 2014.

Authors: Ghislaine Rosa, Maria L. Huaylinos, Ana Gil, Claudio Lanata, Thomas Clasen

Background - Household water treatment (HWT) can improve drinking water quality and prevent disease if used correctly and consistently by vulnerable populations. Over 1.1 billion people report treating their water prior to drinking it. These estimates, however, are based on responses to household surveys that may exaggerate the consistency and microbiological performance of the practice—key factors for reducing pathogen exposure and achieving health benefits. The objective of this study was to examine how HWT practices are actually performed by households identified as HWT users, according to international monitoring standards.

Methods and Findings - We conducted a 6-month case study in urban (n = 117 households) and rural (n = 115 households) Peru, a country in which 82.8% of households report treating their water at home. We used direct observation, in-depth interviews, surveys, spot-checks, and water sampling to assess water treatment practices among households that claimed to treat their drinking water at home. While consistency of reported practices was high in both urban (94.8%) and rural (85.3%) settings, availability of treated water (based on self-report) at time of collection was low, with 67.1% and 23.0% of urban and rural households having treated water at all three sampling visits. Self-reported consumption of untreated water in the home among adults and children <5 was common and this was corroborated during home observations. Drinking water of self-reported users was significantly better than source water in the urban setting and negligible but significantly better in the rural setting. However, only 46.3% and 31.6% of households had drinking water <1 CFU/100 mL at all follow-up visits.

Conclusions - Our results raise questions about the usefulness of current international monitoring of HWT practices and their usefulness as a proxy indicator for drinking water quality. The lack of consistency and sub-optimal microbiological effectiveness also raises questions about the potential of HWT to prevent waterborne diseases.

Need for certification of household water treatment products: examples from Haiti

10 December 2014 11:09 (America/New_York)

Need for certification of household water treatment products: examples from Haiti. Trop Med Int Health. 2014 Dec 1. doi: 10.1111/tmi.12445.

Authors: Murray A1, Pierre-Louis J, Joseph F, Sylvain G, Patrick M, Lantagne D. Author information: 1Tufts University Civil and Environmental Engineering, Department.Medford, MA, USA.

OBJECTIVE: To evaluate four chemical treatment products currently seeking approval in Haiti.

METHODS: Household water treatment (HWT) products were evaluated at the certification process validation stage by verifying international product certifications confirming treatment efficacy and reviewing laboratory efficacy data against WHO HWT microbiological performance targets; and at the approval stage by confirming product composition, evaluating treated water chemical content against national and international drinking water quality guidelines, and reviewing packaging for dosing ability and usage directions in Creole.

RESULTS: None of the four evaluated products fulfilled validation or approval stage requirements. None was certified by an international agency as efficacious for drinking water treatment, and none had data demonstrating its ability to meet WHO HWT performance targets. All product sample compositions differed from labeled composition by >20%, and no packaging included complete usage directions in Creole.

CONCLUSIONS: Product manufacturers provided information that was inapplicable, did not demonstrate product efficacy, and was insufficient to ensure safe product use. Capacity building is needed with country regulatory agencies to objectively evaluate HWT products. Products should be internationally assessed against WHO performance targets and also locally approved, considering language, culture, and usability, to ensure effective HWT. This article is protected by copyright. All rights reserved.

Influence of solar water disinfection on immunity against cholera

10 December 2014 11:04 (America/New_York)

Influence of solar water disinfection on immunity against cholera – a review. Journal of Water and Health Vol 12 No 3 pp 393–398 2014.

Authors: Cornelius Cano Ssemakalu, Eunice Ubomba-Jaswa, Keolebogile Shirley Motaung and Michael Pillay.
Faculty of Applied and Computer Sciences, Vaal University of Technology, Vanderbijlpark 1900, South Africa E-mail: mpillay@vut.ac.za. Council for Scientific and Industrial Research, Natural Resource and the Environment, P.O. Box 395, Pretoria 0001, South Africa. Department of Biomedical Sciences, Tshwane University of Technology, 175 Nelson Mandela Drive, Arcadia Campus, Pretoria 0001, South Africa

Cholera remains a problem in developing countries. This is attributed to the unavailability of proper water treatment, sanitary infrastructure and poor hygiene. As a consequence, countries facing cholera outbreaks rely on interventions such as the use of oral rehydration therapy and antibiotics to save lives. In addition to vaccination, the provision of chlorine tablets and hygiene sensitization drives have been used to prevent new cholera infections. The implementation of these interventions remains a challenge due to constraints associated with the cost, ease of use and technical knowhow. These challenges have been reduced through the use of solar water disinfection (SODIS). The success of SODIS in mitigating the risk associated with the consumption of waterborne pathogens has been associated with solar irradiation. This has prompted a lot of focus on the solar component for enhanced disinfection. However, the role played by the host immune system following the consumption of solar-irradiated water pathogens has not received any significant attention. The mode of inactivation resulting from the exposure of microbiologically contaminated water results in immunologically important microbial states as well as components. In this review, the possible influence that solar water disinfection may have on the immunity against cholera is discussed.

A novel point-of-use water treatment method by antimicrobial nanosilver textile material

10 December 2014 10:58 (America/New_York)

A novel point-of-use water treatment method by antimicrobial nanosilver textile material. J Water Health. 2014 Dec;12(4):670-7. doi: 10.2166/wh.2014.197.

Liu H1, Tang X2, Liu Q3. Author information: 1Key Laboratory of Natural Medicine and Immuno-Engineering of Henan Province, Henan University, Kaifeng, Henan 475004, China E-mail: hjliu@henu.edu.cn; AGplus Technologies Pte Ltd, 10 Jalan Besar #10-06 Sim Lim Tower, Singapore 208787.
2AGplus Technologies Pte Ltd, 10 Jalan Besar #10-06 Sim Lim Tower, Singapore 208787.
3School of Architecture and the Built Environment, Singapore Polytechnic, 500 Dover Road, Singapore 139651.

Pathogenic bacteria are one of the main reasons for worldwide water-borne disease causing a big threat to public health, hence there is an urgent need to develop cost-effective water treatment technologies. Nano-materials in point-of-use systems have recently attracted considerable research and commercial interests as they can overcome the drawbacks of traditional water treatment techniques. We have developed a new point-of-use water disinfection kit with nanosilver textile material. The silver nanoparticles were in-situ generated and immobilized onto cotton textile, followed by fixing to a plastic tube to make a water disinfection kit. By soaking and stirring the kit in water, pathogenic bacteria have been killed within minutes. The silver leaching from the kit was insignificant, with values <100 ppb – the current US EPA and WHO limit for silver level in drinking water. Herein, the nanosilver textile water disinfection kit could be a new, efficient and cost-effective point-of-use water treatment method for rural areas and emergency preparedness.

Assessing point-of-use ultraviolet disinfection for safe water in urban developing communities

10 December 2014 10:56 (America/New_York)

Assessing point-of-use ultraviolet disinfection for safe water in urban developing communities. J Water Health. 2014 Dec;12(4):663-9. doi: 10.2166/wh.2014.223.

Barstow CK1, Dotson AD2, Linden KG1. Author information 1Civil, Environmental and Architectural Engineering, University of Colorado, Boulder, CO 80309, USA E-mail: karl.linden@colorado.edu.
2Civil Engineering, University of Alaska, Anchorage, AK 99508, USA.

Residents of urban developing communities often have a tap in their home providing treated and sometimes filtered water but its microbial quality cannot be guaranteed. Point-of-use (POU) disinfection systems can provide safe drinking water to the millions who lack access to clean water in urban communities. While many POU systems exist, there are several concerns that can lead to low user acceptability, including low flow rate, taste and odor issues, high cost, recontamination, and ineffectiveness at treating common pathogens. An ultraviolet (UV) POU system was constructed utilizing developing community-appropriate materials and simple construction techniques based around an inexpensive low-wattage, low pressure UV bulb.

The system was tested at the bench scale to characterize its hydrodynamic properties and microbial disinfection efficacy. Hydraulically the system most closely resembled a plug flow reactor with minor short-circuiting. The system was challenge tested and validated for a UV fluence of 50 mJ/cm(2) and greater, over varying flow rates and UV transmittances, corresponding to a greater than 4 log reduction of most pathogenic bacteria, viruses, and protozoa of public health concern. This study presents the designed system and testing results to demonstrate the potential architecture of a low-cost, open-source UV system for further prototyping and field-testing.

Comparison of Three Household Water Treatment Technologies in San Mateo Ixtatán, Guatemala

2 December 2014 10:38 (America/New_York)

Comparison of Three Household Water Treatment Technologies in San Mateo Ixtatán, GuatemalaJ. Environ. Eng. , 2014,  10.1061/(ASCE)EE.1943-7870.0000914 , 04014085.

Mellor, J., Kallman, E., Oyanedel-Craver, V., and Smith, J.

Silver-impregnated ceramic water filters (CWFs) are a simple and sustainable low-cost technology that has shown promise in improving household drinking water quality and reducing incidences of early childhood diarrhea in a variety of settings. Despite this promise, lower reservoir contamination is thought to be a contributing factor to the decline in the effectiveness being seen over time. A novel silver-impregnated ceramic torus that can be placed in the lower reservoir was designed to minimize this contamination.

This study uses a one-year randomized trial to compare the relative effectiveness of the CWF+torus design with a standard CWF and point-of-use chlorination. The effectiveness of each technology was measured at project inception and subsequently after six and 12 months. Results indicate that the toruses, as designed, are not able to consistently maintain lower-reservoir silver concentrations above those of the simple CWF design and are hence unable to prevent contamination. Furthermore, after six months, only 65% of households that used point-of-use chlorination maintained sufficient chlorine levels above the 0.2  mg/L needed to be effective.

All three technologies showed statistically equivalent log removal efficiencies for total coliform bacteria and all three declined in effectiveness over the first six months. Combined average log removal efficiencies for all three technologies ranged from 2.22±0.21 initially but declined to 1.45±0.35 after six months and to 1.42±0.29 after one year.

Fouling in hollow fiber membrane microfilters used for household water treatment

2 December 2014 10:34 (America/New_York)

Fouling in hollow fiber membrane microfilters used for household water treatmentJournal of Water, Sanitation and Hygiene for Development, In Press,  2014 | doi:10.2166/washdev.2014.206

Authors: Anna Murray, Mario Goeb, Barbara Stewart, Catherine Hopper, Jamin Peck, Carolyn Meub, Ayse Asatekin and Daniele Lantagne

Department of Civil and Environmental Engineering, Tufts University, 200 College Avenue, Medford, MA 02155, USA E-mail: anna.murray@tufts.edu
Pure Water for the World, Trojes, Honduras
Department of Chemistry, University of Maine, Orono, ME, USA
Department of Molecular and Biomedical Sciences, University of Maine, Orono, ME, USA
Pure Water for the World, Rutland, VT, USA
Department of Chemical and Biological Engineering, Tufts University, Medford, MA, USA

The Sawyer PointOne hollow fiber membrane microfilter is promoted for household water treatment in developing countries. Critical limitations of membrane filtration are reversible and irreversible membrane fouling, managed by backwashing and chemical cleaning, respectively. The PointOne advertised lifespan is 10 years; users are instructed to backwash as maintenance. Owing to reduced turbidity and bacterial removal efficiencies, six PointOnes were removed from Honduran homes after 23 months of use. In the laboratory, we tested sterile water filtrate for turbidity and bacterial presence before and after backwashing and chemical cleaning. Sterile water filtrate from uncleaned filters had turbidity of 144–200 NTU and bacteria counts of 13–200 CFU. Cleaned filter effluent was positive for total coliforms.

On one new and one used, cleaned filter, we imaged membranes with scanning electron microscopy and characterized surface elemental compositions with spectroscopy. Images and spectroscopy of the used, cleaned membrane revealed a dense, cake fouling layer consisting of inorganic metal oxides, organic material, and biofouling. Burst fibers were visually observed. This PointOne was thus irreversibly fouled and non-functional after <2 years of use. Further research is recommended to determine: impacts of source water quality on PointOne performance, a cleaning regimen to manage fouling, and an appropriate filter lifespan.

Porous Ceramic Tablet Embedded with Silver Nanopatches for Low-Cost Point-of-Use Water Purification

1 December 2014 14:14 (America/New_York)

Porous Ceramic Tablet Embedded with Silver Nanopatches for Low-Cost Point-of-Use Water Purification. Environ. Sci. Technol., November 11, 2014

Beeta Ehdaie , Carly Krause , and James A. Smith *

Department of Civil and Environmental Engineering, University of Virginia, Charlottesville, Virginia 22904,

Email: *J. A. Smith. E-mail: jas9e@virginia.edu.

This work describes a novel method to embed silver in ceramic porous media in the form of metallic silver nanopatches. This method has been applied to develop a new POU technology, a silver-infused ceramic tablet that provides long-term water disinfection. The tablet is fabricated using clay, water, sawdust, and silver nitrate. When dropped into a household water storage container, the ceramic tablet releases silver ions at a controlled rate that in turn disinfect microbial pathogens. Characterization of the silver-embedded ceramic media was performed using transmission electron microscopy. Spherical-shaped patches of metallic silver were observed at 1–6 nm diameters and confirmed to be silver with energy dispersive spectroscopy. Disinfection experiments in a 10 L water volume demonstrated a 3 log reduction of Escherichia coli within 8 h while silver levels remained below the World Health Organization drinking water standard (0.1 mg/L). Silver release rate varied with clay mineralogy, sawdust particle size, and initial silver mass. Silver release was repeatable for daily 10 L volumes for 154 days. Results suggest the ceramic tablet can be used to treat a range of water volumes. This technology shows great potential to be a low-cost, simple-to-use water treatment method to provide microbiologically safe drinking water at the household level.

Comparing Willingness to Pay for Improved Drinking-Water Quality Using Stated Preference Methods in Rural and Urban Kenya

1 December 2014 14:10 (America/New_York)

Comparing Willingness to Pay for Improved Drinking-Water Quality Using Stated Preference Methods in Rural and Urban Kenya. Appl Health Econ Health Policy. 2014 Nov 8.

Brouwer R1, Job FC, van der Kroon B, Johnston R.
Author information
1Department of Environmental Economics, Institute for Environmental Studies, Vrije Universiteit, De Boelelaan 1087, 1081 HV, Amsterdam, The Netherlands, r.brouwer@vu.nl.

BACKGROUND: Access to safe drinking water has been on the global agenda for decades. The key to safe drinking water is found in household water treatment and safe storage systems.
OBJECTIVE: In this study, we assessed rural and urban household demand for a new gravity-driven membrane (GDM) drinking-water filter.
METHODS: A choice experiment (CE) was used to assess the value attached to the characteristics of a new GDM filter before marketing in urban and rural Kenya. The CE was followed by a contingent valuation (CV) question. Differences in willingness to pay (WTP) for the same filter design were tested between methods, as well as urban and rural samples.
RESULTS: The CV follow-up approach produces more conservative and statistically more efficient WTP values than the CE, with only limited indications of anchoring. The effect of the new filter technology on children with diarrhea is among the most important drivers behind choice behavior and WTP in both areas. The urban sample is willing to pay more in absolute terms than the rural sample irrespective of the valuation method. Rural households are more price sensitive, and willing to pay more in relative terms compared with disposable household income.
CONCLUSION: A differentiated marketing strategy across rural and urban areas is expected to increase uptake and diffusion of the new filter technology.

Carbon Financing of Household Water Treatment: Background, Operation and Recommendations to Improve Potential for Health Gains

10 November 2014 14:44 (America/New_York)

Carbon Financing of Household Water Treatment: Background, Operation and Recommendations to Improve Potential for Health Gains. Env Sci Tech, Oct 2014.

Authors: James M. Hodge and Thomas F. Clasen. Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, Georgia 30322, United States, e-mail: tclasen@emory.edu

Household water treatment (HWT) provides a means for vulnerable populations to take charge of their own drinking water quality as they patiently wait for the pipe to finally reach them. In many low-income countries, however, promoters have not succeeded in scaling up the intervention among the target population or securing its consistent and sustained use. Carbon financing can provide the funding for reaching targeted populations with effective HWT solutions and the incentives to ensure their long-term uptake. Nevertheless, programs have been criticized because they do not actually reduce carbon emissions. We summarize the background and operation of carbon financing of HWT interventions, including the controversial construct of “suppressed demand”.

We agree that these programs have limited potential to reduce greenhouse gas emissions and that their characterization of trading “carbon for water” is misleading. Nevertheless, we show that the Kyoto Protocol expressly encouraged the use of suppressed demand as a means of allowing low-income countries to benefit from carbon financing provided it is used to advance development priorities such as health. We conclude by recommending changes to existing criteria for eligible HWT programs that will help ensure that they meet the conditions of microbiological effectiveness and actual use that will improve their potential for health gains.

Cholera at the Crossroads: The Association Between Endemic Cholera and National Access to Improved Water Sources and Sanitation

10 November 2014 14:38 (America/New_York)

Cholera at the Crossroads: The Association Between Endemic Cholera and National Access to Improved Water Sources and Sanitation. Am Jnl Trop Med Hyg, Nov 2014.

Authors: Benjamin L. Nygren*, Anna J. Blackstock and Eric D. Mintz

Address correspondence to Benjamin L. Nygren, Centers for Disease Control and Prevention, 1600 Clifton Road NE, MS-C09, Atlanta, GA 30329. E-mail: bnygren@cdc.gov

We evaluated World Health Organization (WHO) national water and sanitation coverage levels and the infant mortality rate as predictors of endemic cholera in the 5-year period following water and sanitation coverage estimates using logistic regression, receiver operator characteristic curves, and different definitions of endemicity.

Each was a significant predictors of endemic cholera at P < 0.001. Using a value of 250 for annual cases reported in 3 of 5 years, a national water access level of 71% has 65% sensitivity and 65% specificity in predicting endemic cholera, a sanitation access level of 39% has 63% sensitivity and 62% specificity, and an infant mortality rate of 65/1,000 has 67% sensitivity and 69% specificity.

Our findings reveal the tradeoff between sensitivity and specificity for these predictors of endemic cholera and highlight the substantial uncertainty in the data. More accurate global surveillance data will enable more precise characterization of the benefits of improved water and sanitation.

Open-source mobile water quality testing platform

10 November 2014 14:33 (America/New_York)

Open-source mobile water quality testing platform. Journal of Water, Sanitation and Hygiene for Development, Vol 4 No 3 pp 532–537 2014.

Authors: Bas Wijnen, G. C. Anzalone and Joshua M. Pearce

Department of Materials Science & Engineering, Michigan Technological University, 601 M&M Building, 1400 Townsend Drive, Houghton, MI 49931-1295, USA E-mail: pearce@mtu.edu
Department of Electrical & Computer Engineering, Michigan Technological University, 601 M&M Building, 1400 Townsend Drive, Houghton, MI 49931-1295, USA

The developing world remains plagued by lack of access to safe drinking water. Although many low-cost methods have been developed to treat contaminated water, low-cost methods for water-quality testing are necessary to determine if these appropriate technologies are needed, effective, and reliable. This paper provides a methodology for the design, development, and technical validation of a low-cost, open-source (OS) water testing platform. A case study is presented where the platform is developed to provide both the colorimetry for biochemical oxygen demand/chemical oxygen demand and nephelometry to measure turbidity using method ISO 7027. This approach resulted in equipment that is as accurate, but costs between 7.5 and 15 times less than current commercially available tools. It is concluded that OS hardware development is a promising solution for the equipment necessary to perform water quality measurements in both developed and developing regions.

Scaling up Multiple Use Water Services: Accountability in the water sector

10 November 2014 14:28 (America/New_York)

Scaling up Multiple Use Water Services: Accountability in the water sector, October 2014.

Authors: Barbara van Koppen, Stef Smits, Cristina Rumbaitis del Rio and John B. Thomas. IWMI.

Scaling up Multiple Use Water Services argues that by designing cost-effective multi-purpose infrastructure MUS can have a positive impact on people’s health and livelihoods. It analyses and explains the success factors of MUS, using a framework of accountability for public service delivery, and it also examines why there has been resistance against scaling up MUS. A stronger service delivery approach can overcome this resistance, by rewarding more livelihood outcomes, by fostering discretionary decision-making power of local-level staff and by allowing horizontal coordination. This book should be read by government and aid agency policy makers in the WASH and agriculture sectors, by development field workers, and by academics, researchers and students of international development.

Comparing Willingness to Pay for Improved Drinking-Water Quality Using Stated Preference Methods in Rural and Urban Kenya

10 November 2014 14:23 (America/New_York)

Comparing Willingness to Pay for Improved Drinking-Water Quality Using Stated Preference Methods in Rural and Urban Kenya. Appl Health Econ Health Policy. 2014 Nov 8.

Authors: Brouwer R1, Job FC, van der Kroon B, Johnston R.
1Department of Environmental Economics, Institute for Environmental Studies, Vrije Universiteit, De Boelelaan 1087, 1081 HV, Amsterdam, The Netherlands, r.brouwer@vu.nl.

BACKGROUND: Access to safe drinking water has been on the global agenda for decades. The key to safe drinking water is found in household water treatment and safe storage systems.

OBJECTIVE: In this study, we assessed rural and urban household demand for a new gravity-driven membrane (GDM) drinking-water filter.

METHODS: A choice experiment (CE) was used to assess the value attached to the characteristics of a new GDM filter before marketing in urban and rural Kenya. The CE was followed by a contingent valuation (CV) question. Differences in willingness to pay (WTP) for the same filter design were tested between methods, as well as urban and rural samples.

RESULTS: The CV follow-up approach produces more conservative and statistically more efficient WTP values than the CE, with only limited indications of anchoring. The effect of the new filter technology on children with diarrhea is among the most important drivers behind choice behavior and WTP in both areas. The urban sample is willing to pay more in absolute terms than the rural sample irrespective of the valuation method. Rural households are more price sensitive, and willing to pay more in relative terms compared with disposable household income.

CONCLUSION: A differentiated marketing strategy across rural and urban areas is expected to increase uptake and diffusion of the new filter technology.

Pages

fhi360 care Winrock International

The information provided on this web site is not official U.S. Government information and does not represent the views or positions of the U.S. Agency for International Development or the U.S. Government.